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Abstract The multiparameter solutions, 4 x 4 R-matrices, of quantum Yang-Baxter
equation have been systematically investigated and more than thirty selected solutions
are presented by using Wu elimination. The free parameters and non-zero eigenvalues of
these R-matrices vary from one to five and zero to four respectively. They are classified
according to the corresponding algebraic structures.

1. Introduction

The quantum Yang-Baxter equation (YBE) [1] has been studied as the master equa-
tion in integrable models in statistical mechanics and quantum field theory in two
dimensions for more than twenty years. Recent progress shows that it plays a pro-
found role in a variety of diverse problems in theoretical physics such as exactly
soluble models (such as the six- and eight-vertex models) in statistical mechanics {2],
integrable model field theories [3], exact S-matrix theory [4], two-dimensional field
theories involving fields with intermediate statistics [5], conformal field theory [6] and
quantum groups [7], which have shed new light on the significance of this equation.

In this paper we study the quantum YBE without spectral parameters by using Wu
elimination. Let V' be a complex vector spacc and R the solution of the YBE. Then
R takes values in End (V' @ V') and satisfies the YBE

R12R13Ra5 = RyzRiaRys (1)

where R,; signifies the matrix on the complex vector space V ® V ® V/, acting as R
on the :th and the jth components and as the identity on the other component, e.g.
Ry =RL

Basically V' is two-dimensional and R are 4 x 4 matrices. In this case R;; are
& x 8 matrices. Therefore the YBE (1) is a set of equations with 64 equations and
16 complex variables, Tb solve the set of equations is to find the zero sets of the 64
equations defined in 16-dimensional complex space. Higher rank matrix solutions can
be constructed with these 4 x 4 matrix solutions.

Unfortunately little is known about the 4 x 4 matrix solution of the YBE. Orig-
inally what is known is the so called ‘standard’ solution R, and its supersymmetric
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counterpart solution R,

q 0 00 q 0 0 0

_{o 1 oo ,_{0o 1 o o

Fo=lo q-¢ 1 0 =10 =gt 1 0
0 0 0 g 0 0 o0 —q!

With respect to the quantum group R, gives rise to the g-deformed algebra SU,(2)
and R; corresponds to the case of superalgebra. Both R, and R; have only one
parameter.

Recently a two-parameter solution of the YBE for R, has been found [8]

[
=]
a0 o0

which reduces to R, when p approaches g.

It is natural to ask whether any other multiparameter solutions for such a sig-
nificant equation can be found. That is, whether a system of algebraic equations
consisting of 64 cubic polynomial equations can be well solved. Wu elimination, es-
tablished by Wu Wen-tsiin [9], provides a perfect method to solve such a system of
algebraic equations. In this paper we present a series of selected multiparameter
solutions of the YBE. The systematic approach to the YBE using Wu elimination will
be given in [10].

2. The multiparameter solutions

For convenience we set the R-matrix to be

Xll X3 Xl X17
X5 X12 X15 XZ (2)
X'? Xlﬁ X13 X4
XIS XS XG XH

where the X are complex variables. The YBE is invariant under certain similarity
transformations. Let A be a 2 x 2 non-singular matrix. If R is a solution of the YBE,
then

R=(AQAR(A @AY 3

is also a solution of the YBE. It is easy to find that there exists a X;-dependent matrix
A that transforms matrix (1) to a new one with matrix elements R(1,2) = R(1,3)
and R(2,4) = R(3,4) or R(2,1) = R(3,1) and R(4,2) = R(4,3). What is more,
from our experience, instead of matrix (2), it is safe to postulate that an R-matrix is
of the form

Xy Xy Xy Xy

Xs X X5 X, @
Xy Xie X1z Xy |7

Xis Xo¢ Xo¢ X
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So far all the solutions we have found are of the form (4) up to similarity transfor-
mation (3).

Substituting (4} into YBE (1) we obtain many solutions with a varying number of
parameters and eigenvalues. In order to classify these solutions we work with the
corresponding braid group representations.

v
Let R be a solution of the YBE and R = RP, where P is the permutation matrix,

Y
then R satisfies
v v v \' Vv

v
By Ry By = R23R12R23

v v v v
where Ry, = R®@land R, =T ® R.

Investigating the Temperley-Lieb and Birman—Wenzl algebraic structures by use
of the braid group representations, we find that four solutions are of Temperiey—Lieb
algebraic structures, eighteen solutions seem to be of quantum superalgebras; ten
solutions are of Birman-Wenzl algebraic structures; and there are sixteen solutions
possessing four different eigenvalues. The remaining solutions have zero eigenvalues.
Namely, they have no inverses. Hence they are not meaningfui.

Now we present part of the multiparameter solutions according to this classifica-
tion. The systematic and complete solutions of the quantum YBE will be presented
in future papers.

2.1. Solutions of the YBE with Temperiey—Lieb algebras

First the solutions in form (4) include the solutions £, and R,
X 0 0 0
0 X5 0 0
= 2 _
Rl - 0 Xll XX13X12 X13 0
11
0 0 0 Xy

v
The eigenvalues of R, are X,,, X,; and X ;. While the eigenvalues of R, are X,
and —X,,X,3/X,, satisfying

(}'21 — X, - IW)y? (}'21 + % . 1(")) =0
1

which can be reduced to

(}’zl - X, . 14y (}%l + 512_}(13: . [(4)) =0

Xll
where I*) is a 4 x 4 identical matrix. Therefore the Templerly-Lieb algebra can
be readily constructed. It is clear that if one takes X, = ¢, X3, = X3 =1, R,
becomes the ‘standard’ solution R _; and taking X, = ¢, X;; =1, X,53= ¢/p, one
gets the two-parameter solution R, .. In fact R, is equivalent to R, because a
solution may be multiplied by a constant.
Another example for solution with Temperley-Lieb algebra is

X, 0 o 0
6o -X, 0 0
0 Xp+X, X O
0 0 0 Xy,

R, =
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22 Quantum superalgebraic type solutions of the YBE

X, 0 0 0
2 0 XX+ Xy, —-X;X, 0

v v
The eigenvalues of R, are still two, X,, and X,,X,;. But R, now satisfics the

equation
v v
(Rg— X13X5- 1(4))2(123 - Xy 1(4))2 = 0.
Hence although this equation reduces to

v v
(R3 - X12X13 ’ I(4))(R3 - Xll . I(4)) =0
it is impossible to construct the Temperley-Lieb algebra. By calculating the equation
R,N\T, = T,T) R, where T, = T@I, T,=1@T and T is 2 x 2 matrix, one
finds that R corresponds to a superalgebra [11]. In fact, by taking X,;, = q and
X5 = —q7!, R, becomes the solution R which gives rise to a superaigebra.

More examples are in order:

Be=1 ¢ 0o X, ©
0 Xs X —-Xy
Xy 0 0 X7
R. = 0 Xll Xll - Xlz 0
5 0 0 12 0
0 0 0 "'X12
/Xn 0 0 0\
0 "‘“21 - 0o X,
Ry =
0 0 X“;:a X,
0 X3 X, XzX, Fa

X, X?
X3X1 _Xll ):i’ :
Ry = X, X2 ;
X3X1 ):z' : “Xll 0
k e :\11 ~ A8
\ U u v -
[ X4, 0 0 ]
R — —X1]X3 0 X2X3 X2
s —X11X3 X2X3 0 X2

,
L]
o]
(=]
S
.
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X X, X2-2
6 2X33 X, X, X3X,
Ry = Xe - Xe XXy XeXyX; X,
9 XG X6X2X3 _X6X2X3 X22
XX, X, X,  XeXaXi-2
X3
1
Xi — X, -X, X,
4
R = | X, X, (2X,, + X2X,) -X,, XX, Xz

-X, X (2X,, + X7X,) XiX, Xy X,
XIX2(2X + XiX,) -X3X7 -X3X] (X, +2X3}X)

SOIUNONS Of n€ YBE Wiin pirman—rrenzi aigeoras
n={go o -X, 0
o o 0 X,

v 2’
Both R,; and R,; have two eigenvalues +X,, and R, satisfies
v v
(Ru - X11 ' I(4))3(R11 + X 1(4)) =0
which reduces to
A v
(Rll - Xll ' I(q))z(Ru + X].l ' 1(4)) = 0.

v
Owing to the degeneracy for eigenvalue X,,, R, can only have one kind of Birman-
Wenzl algebra representation:

X (] 0 0
Xy X2 0 0
Ry, = ))((52 0 Xa 0
2 3
—— — -X. X
Xl]_ _X12 X5 5 11

Here ;?.12 has three different eigenvalues X, and +X,, satisfying
¥ 9 A4 4 v
(Ryy— X1, - IO (R + Xy - I (Ryy = Xy - IW) =0
which reduces to
v a v 4 v
(Ruiy = Xy I0)(Ryp + Xy I9)(Ryy = X, - 1@) =0,

Hence one can construct two classes of Birman-Wenzl algebra representations for
v

R,
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It i straightforward to check that the following two solutions have the same
properties,

X X, X, X4X12
X, X, -2
Xy 11X4 X Xo X, -X,
R — 4
13 . - o X11X4_2 L
5 AgAgaAg T —Ay
X, X2 ~Xg -X, X,
X1 Xy X, X
Xs -X1 X15 ~-X,
R,= Xs Xis —Xun X,
X17X52 + X715 X1; - 22X X5 X,
- X =X X
X7 Xy — X3 : 3 H

For solutions of the YBE in which their braid group representation matrices have
four different eigenvalues, the algebraic structures need further investigation. Here
are some solutions of this kind.

Xu X, X, 0
X,X, 1(121_“ 0 0
R, =
* Y v 0 “Xuxb
\113111 A 2 u }
0 o o +b
where b= /X7 + 4 X; X7
/X, X, X o\
R = Xy Xy O X,
PTEX 0 Xy, Xy
0 Xy X5 2X),-4Xp
7 X1 Xay = Xo X, + X7 Y AY
X /Ll Jll 2T
17
R.. = 0 X, O X,
7= 0 0 X X,
0 0 0 X17X12_X2X1+X§
X1z
4iX,X, 2X, 2X, 0
e o | 2Xx3 XX, o X,
571 2x, X2 0 —iXoX, X,
0 X, X2 X, X; -i2X,X;
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where 1 = +/-1.
X X X, -X, -X, X%Xa
—1+c
X =X X3 X, X X,
R, = )
19 -l4c¢
Xs X —X: X5X, X,
a
X5X, -X; —Xs X5 X3X,

Xs—dxe 2X, X, X,
> 6o TR
+e—- X
X —X3( Xy - Xy) _2)(—5 X,
Roy = x de— Xg X(Xa X)) X
B 2X3 3 2 1 X +(21d:
- - 25T IFE
\ 2X: X X, X 2%, /

where d = 2X2(X, + X,;) and e = /X? - 4X X2(X, - X,) - 16X, X, X}.
The YBE aiso contains many solutions with zero eigenvalues. For example,

111 1y

X, X XI X3

SR S

XS Xﬁ Xg

Ry = 1 11
1 @ —— =

X3 X3 Xg

1

\Xs -1 =l %)

v
Both R,, and R,, have eigenvalue zero with degeneracy four! The following solutions

v
(for both R; and R;) also have zero eigenvalues.

X“ :ti(Xw;'Xu) ii(X!Z';XIl) _Xlz
:L_‘i(X12'2*'X11) X ' ii(Xw;' Xu)
Ry = :I:i(X”:X”) X, X, ii(Xw;-X“)
_X,, ii(Xm;‘Xn) ii(Xm;'Xu) _9X - X,

"X5X3 "X5X§ “‘X5X32 —Xng

R..= X5 XsXs X5X3 XsX:?
L Xy X: X5 XA, X X2
X]S “Xs _Xs _X5X3
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( X X3X,+2

X, X, X, X}
X4
R — X Xs Xo X, X X, X, -X,
= X X X, X, XX, X, -X,
X X:iX, +2
\ X, X? -X; S5 G L 3{41
( X, 0 o0 0
X 0 0 0
Ry = X, 0 0 0
X X~ X2 XX
X X _ 11 6
X1 ® ¢ Xs
(0 Xy Xy Xz \
0 0 Xi 0
Xl?
Ri=|, _XI 0
17
X3
0 0 0 i
\ X7/
2X?
0 X, X o
9 n

v _Y
0 0O 0 0

These solutions are not meaningful. However, with respect to the braid group
representations, they constitute semi-braid groups with one kind of group operation
and certainly give rise to a class of links.

2.4. Other solutions

For solutions that do not seem to be given in the ansatz (4) we consider

X1 0 0 0
R = Xll_XlZ X12 0 0 \
28 = v v b v h'd n
\Aw“/\u Al T N2 Al v }
X12“X11 X1x+X12 X11+X12 "Xlz

It is easy to find that RS, is equivalent to a solution in ansatz (4), R,;,
Y 28 q 28

X\ 0 0 0 \

e alvmt Ao A 0 X, 0 0

Rpg=(A 34 )HQEKA@A):\ 0 X, X, Xy 0 )
0 0 0 —Xy

1 0
where A = (1 1).
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Similarly, the solution
Xy X X, X
Ry = Xe X X5 X
Xy, Xy Xiuy X
Xis Xy Xe X
can be transformed into
Ry =(B® B)Ry)(B™'® B™')

f 0 0 0
= |0 —(Xy—-Xy—Xe+ Xye) 0 0
0 0 X+ X, —Xg— X5 0
0 0 o g

-1 1

7 2
The following two solutions can also be transformed into the form of ansatz (4)
by non-singular transformation matrices depending on the values of X,.

1 0 0 0
e | X0-x) X, 0 0
VTN X X(1-X) 1+ XX ~Ag 0
X§( X3 - X)) X(1+ X)) X X;(1+ X)) X, X,
1 0 0 0
R.. = Xe(1-X,) X, 0 0
2= | X, X,1- X)) 1+ X, X, X, o
X1 -X)D)A+X;3) X X,(1+ X;) —Xs(14+X,) 1

It is also easy to find that when Xy = 1, Ry, and Ry are equivalent to R, and R,.
Taking X,, = X, X,; and X,; = X3 we have
Ry(Xs=1)=(CQC)Ry(C~ 1o C™1),
Let X, = X, X, and X3 = —X; X3 we get
Ry(Xs=1)=(CRC)R,(C ' C™).
x5t o
Here the transformation matrix C' = ( e o ,4).
Xll Xll

3. Conclusion

It should be noted that the solutions given in this paper have a varying number of
eigenvalues and parameters. There are as many as five {four which are indenpendent
as the solution may be multiplied by an arbitrary constant) free parameters in the
4 x 4 matrix solution R,,. All these parameters are contained in the eigenvalues of

v
R, and R ,.

The Temperley-Lieb and Birman-Wenz] algebraic structures, link polynomials,
integrable models, quantum groups and quantum algebras [7] as well as their classical
realizations and geometric meanings [12] for every solution remain to be investigated
further. It will also be interesting to study the Yang-Baxterization of the solutions and
relate these constant solutions to the well-known hard-hexagon [2] and ‘free-fermion’
[13] R-matrices. The detailed construction of the Temperley-Lieb algebra and the
Yang-Baxterization of some of these solutions are presented in [14].
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